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Abstract

This paper studies graphical model selection,
i.e., the problem of estimating a graph of
statistical relationships among a collection
of random variables. Conventional graphi-
cal model selection algorithms are passive,
i.e., they require all the measurements to
have been collected before processing begins.
We propose an active learning algorithm that
uses junction tree representations to adapt
future measurements based on the informa-
tion gathered from prior measurements. We
prove that, under certain conditions, our ac-
tive learning algorithm requires fewer scalar
measurements than any passive algorithm to
reliably estimate a graph. A range of numer-
ical results validate our theory and demon-
strates the benefits of active learning.

1 Introduction

An important problem that arises in many applica-
tions is that of inferring the statistical relationships
between a large collection of random variables. For ex-
ample, the random variable could represent expression
values of a gene, opinions of a person, or stock returns
of a company. Graphical models compactly represent
statistical relationships using a graph. The vertices in
the graph represent random variables, and the edges
in the graph represent statistical relationships between
random variables [1]. Although the graph may be of
three types, namely directed, undirected, or mixed, we
only study undirected graphs here. Given measure-
ments drawn from a graphical model, there are now
several algorithms for estimating the graph of statis-
tical relationships. See [2–4] for Gaussian graphical
models, [5–7] for discrete graphical models, and [8] for
nonparametric graphical models.
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All conventional algorithms for learning graphical
models are passive, i.e., they rely on all the mea-
surements being collected before any processing be-
gins. We envision several applications of active learn-
ing for graphical models, where future measurements
are collected based on the information gathered from
prior measurements and/or prior knowledge. For ex-
ample, in gene expression analysis, once enough mea-
surements have been obtained from a large collection
of genes, subsequent measurements can be focused on
a subset of genes with more complex interactions. In
social network analysis, measurements can be focused
on a small subset of people rather than all people in
the social network.

Although there exists active learning algorithms for
various statistical inference problems, including clas-
sification [9], sparse signal recovery [10], clustering
[11], multiple testing [12], matrix completion [13], and
causal structure discovery [14], the methods in these
works do not necessarily apply to learning graphical
models. Furthermore, although there exists methods
for designing optimal experiments for learning statis-
tical models [15], we are not aware of any work that
studies active learning for graphical models.

In this paper, we propose an active learning algorithm
for learning the structure of the graph in a graphi-
cal model. On a high level, our algorithm is summa-
rized as follows. Suppose we have a large graph that
is composed of two or more subgraphs that may have
complicated structures themselves, but have relatively
few edges between them. In principle it should be eas-
ier to identify the gross structure of the graph (i.e.,
the subsets of vertices corresponding to each subgraph
and the few edges between these sets of vertices), then
to identify the full graph structure. So we pursue a
sequential and active approach to learn the graph.

First, we obtain full joint measurements of all the ver-
tices and identify the gross structure. The gross struc-
ture allows us to partition the large graph into mul-
tiple subgraphs. We then identify the edges and the
non-edges in each subgraph that have been estimated
reliably. Next, we collect additional, focused measure-
ments, over a subset of the vertices to identify the
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edges that could not be reliably estimated using the
past measurements. The advantage of this sort of ap-
proach is that many of the measurements only involve
a smaller subset of the vertices. For this reason, the
total number of scalar measurements required for re-
liable graph estimation using this sort of active proce-
dure can be significantly lower than the total number
of scalar measurements required by conventional pas-
sive methods.

Theoretically, we establish sufficient conditions on the
number of scalar measurements needed for reliable
graph estimation using an active learning algorithm.
Next, we analyze our algorithm when given addi-
tional knowledge about the absence of certain edges
in the graph. We prove that, under certain favorable
conditions, an active learning algorithm can estimate
walk-summable Gaussian graphical models over p ver-
tices using only O(pminθ

−2
min log pmin) scalar measure-

ments, while any passive algorithm necessarily requires
O(pθ−2

min log pmin) scalar meausurements. Here, pmin is
the size of the smallest cluster in a junction tree repre-
sentation after incorporating the prior knowledge and
θmin quantifies the intrinsic difficulty of the graphical
model selection problem. The particular conditions in
our analysis depend on the positioning certain “weak
edges” in the graph and the scaling of the parameter
θmin. Finally, we empirically demonstrate the benefits
of our algorithm using numerical simulations.

2 Undirected Graphical Models

An undirected graphical model is a joint probabil-
ity distribution, say PX , defined on a graph G∗ =
(V,E(G∗)), where V = {1, ..., p} indexes the random
vector X = (X1, ..., Xp). For any graph G, we use
the notation E(G) to denote its edges. The vertices V
index the random variables and the edges E(G∗) en-
code statistical relationships between the random vari-
ables. In particular, when PX > 0, undirected graphi-
cal models can be characterized using Markov proper-
ties. One such Markov property is the global Markov
property which says that whenever a set of vertices A
and B are separated by S, then XA is independent of
XB given XS . Note that a set S separates A and B
if all paths from A to B pass through S. In this pa-
per, we consider the graphical model selection problem
of estimating the unknown graph G∗ given measure-
ments drawn from the probability distribution PX .

3 Active Learning Algorithm

In this section, we present our active learning algo-
rithm for graphical model selection. Recall that our
goal is to actively draw measurements from PX . Sec-
tion 3.1 discusses our algorithm. Section 3.2 discusses
a key step in our algorithm that determines the future
measurements given prior measurements.

Measurements Measurements

Figure 1: Shaded regions represent the active vertices.
As measurements are acquired, the number of active
vertices decrease.

3.1 Algorithm Overview

Algorithm 1: Active Learning

• Inputs: A, Ê, F̂ , q, K, and δ.
• Initialization: X← ∅
• For w = 1, 2, . . . ,K

– If w = K, then δ ← 1
– m← #δq/|A|$ ; q ← (1− δ)q
– Xm

A ← Draw m i.i.d. samples from PXA .
– Update measurements: X← X ∪ Xm

A

– Update A, Ê, and F̂ using Algorithm 2.
• Estimate the remaining edges and combine
with Ê and F̂ to output Ĝ.

Algorithm 1, which can be seen as an extension of the
active methods for sparse signal recovery [10, 12] ap-
plied to graphs, presents our active learning algorithm
for graphical model selection with the following inputs:

• Active vertices A: We say that A ⊆ V are active
vertices if all edges and non-edges over Ac and
those connecting Ac to A are known.

• Estimated edges Ê: Edges that have been esti-
mated to be in the true graph.

• Estimated non-edges F̂ : Edges that have been
estimated to not be in the true graph.

• Measurement budget q: Total number of scalar
measurements Algorithm 1 should draw from PX .

• Number of measurement rounds K: Number of
times Algorithm 1 draws measurements from PX .

• Fraction of measurements δ: The fraction of scalar
measurements drawn in each round.

The main idea in Algorithm 1 is to sequentially draw
measurements from PX and check for edges and non-
edges that can be reliably estimated using prior mea-
surements. Algorithm 1 initiates by drawing measure-
ments from the active vertices A, where the number
of measurements is determined by q and δ. Next, the
sets A, Ê, and F̂ are updated using Algorithm 2, which
is discussed in Section 3.2. In general, as illustrated
in Figure 1, as measurements are acquired, the size of
the set A decreases since parts of the graph are reliably
estimated using prior measurements.

3.2 Finding Active Vertices

In this section, we discuss the challenging step in Al-
gorithm 1 of updating the active vertices A, the edges
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Ê, and the non-edges F̂ . Our main idea is to estimate
two graphs, H+ and H−, such that H+ is likely to
contain all the true edges and H− is likely to contain
a subset of the true edges. The edges Ê and F̂ can
then be identified from H− and H+, respectively. We
now want to devise an algorithm to find the active ver-
tices A given H− and H+. For a set U and a graph G,
let G[U ] be the induced subgraph over U that contains
all edges from G that only involve the vertices U . Note
the following:

• If H+ = H−, we clearly do not need any more
measurements.

• Suppose U and U ′ have the property that U\U ′

is separated from all other vertices. If H+[U ] =
H−[U ], then we must have that G∗[U ] =
H+[U ] = H−[U ]. In this case, there is no need to
draw measurements from the vertices U\U ′ and
the sets Ê and F̂ can be modified accordingly.
We may still need to draw measurements from U ′

since edges in other clusters may depend on U ′.
• If H+[U ] (= H−[U ], all vertices over U may need
to be observed further.

To identify appropriate sets U , we use junction tree
representations of the graph H+. Informally, a junc-
tion tree clusters vertices in a graph so that the result-
ing graph over the clusters is a tree; see [16] for more
details. In prior work, we have used junction trees to
improve the performance of passive graphical model
selection algorithms [17]. As it turns out, since we are
only interested in the clusters of the junction tree, it
is sufficient to identify the cliques in a chordal graph
of H+; see [18] for a definition of chordal graphs.

A graph may have multiple chordal graphs. An op-
timal chordal graph, which is computationally diffi-
cult to find, is defined so that the size of the maxi-
mum clique is the smallest. Although finding optimal
cliques is “ideal” for our algorithm, it is not necessary
for our algorithm to function properly. In our imple-
mentation, we use linear time greedy heuristics [19],
which are known to output close to optimal chordal
graphs [20]. A summary of the above steps is shown
in Algorithm 2.

Algorithm 2: Find Active Vertices

• Inputs: X, Ê and F̂ .
• Initialize: A← ∅
• Estimate H+ and H− (see Remark 3.1).
• V ← Cliques in chordal graph of H+

• For each clique Vk ∈ V
– If H+[Vk] (= H−[Vk], then A← A ∪ Vk

– If H+[Vk] = H−[Vk], then Ê ← Edges
of H+[Vk], F̂ ← Nonedges of H+[Vk]

• Return A, Ê and F̂

1
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G∗ H+ H−

Figure 2: Illustration of Algorithm 2.

To illustrate Algorithm 2, consider the graphsG∗, H+,
and H− in Figure 2. A simple calculation shows that
the cliques of a chordal graph of H+ are {1, 2, 4},
{2, 3, 4}, {3, 4, 5}, and {5, 6}. Comparing the induced
subgraphs of H+ and H− on the cliques, we identify
that the edge (5, 6) is in the true graph. Furthermore,
if (3, 5) /∈ H+, then the edge (4, 5) can also be identi-
fied to be in the true graph.

Remark 3.1. An important step in Algorithm 2 is
computing the graphs H+ and H−. Recall that we
want G∗ ⊆ H+ and H− ⊆ G∗. In our numerical
simulations, we use stability selection [21], with ap-
propriate thresholds, to select H+ and H−. We refer
to Appendix A for more details.

Remark 3.2. Both Algorithms 1 and 2 are indepen-
dent of the choice of the graphical model selection al-
gorithm. Furthermore, the computational complexity
of the active learning algorithm is dominated by the
computation of H+ and H−. Thus, the overall com-
plexity is roughly O(KI), where O(I) is the complex-
ity of graphical model selection. As will be clear from
the theoretical results and the numerical simulations,
the additional computations required for active learn-
ing is a small price to pay for the potential benefits of
using active learning for improved graph estimation.

4 Conditional Independence Testing

Algorithm 3. CIT(Xn
V , κ, η): Conditional inde-

pendence testing for graphical model selection

• Inputs: Xn
V : n i.i.d. measurements; κ: An

integer that controls the computational com-
plexity; τn: threshold that controls the spar-
sity of graph.

• Ĝ← Complete graph over p vertices.
• for each (i, j) ∈ E(Ĝ)

– If ∃ S, |S| ≤ κ, s.t. |ρ̂ij|S | ≤ τn, then

delete edge (i, j) from Ĝ.
• Return Ĝ.

In this section, we review a graphical model selec-
tion algorithm to study the advantages of our active
learning algorithm. In particular, we review Algo-
rithm 3, called CIT, which uses conditional indepen-
dence tests to estimate a graph. This method is not
new, and goes back to the SGS-Algorithm [22] for
learning Bayesian networks. The conditional indepen-
dence test used in CIT is to threshold the empirical
conditional correlation coefficient (see (A3) for def-
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inition). Recently, [4, 7] studied the regimes under
which a conditional independence test based graph-
ical model selection algorithm has attractive sample
complexity. Although the computational complexity
of Algorithm 3 is O(pκ+2), where κ is an input to the
algorithm, the PC-Algorithm [23] can be used to sig-
nificantly speed up the computations.

To characterize the performance of Algorithm 3, we
consider the following assumptions.

(A1) PX is a multivariate normal distribution
with mean zero and covariance Σ such that
maxi,i Σi,i ≤M <∞, where M is a constant.

(A2) Xi ⊥⊥ Xj |XS ⇐⇒ i and j are separated by S.

(A3) sup |ρij|S | < 1, where ρij|S =
Σij|S√

Σi,i|SΣj,j|S
and

Σi,i|S = Σi,j −Σi,SΣ
−1
S,SΣS,j. Note that ρ̂ij|S is

computed using the empirical covariance matrix.

(A4) If (i, j) /∈ E(G∗), there exists a minimal separa-
tor of size η that separates i and j.

The Gaussian assumption in (A1) is for simplicity. We
can use the results in [7] to generalize the analysis
to discrete distributions. Assumption (A2) is some-
times called the faithfulness condition. The parameter
ρij|S in (A3) is the conditional correlation coefficient.
Whenever (i, j) /∈ G∗, then ρij|S = 0. Moreover, using
(A2), we have that ρij|S = 0 if and only if (i, j) /∈ G∗.
This justifies the use of the empirical conditional corre-
lation coefficient, ρ̂ij|S , to test for conditional indepen-
dence in Algorithm 1. The minimal separator in (A4)
is defined as a separator S for (i, j) /∈ E(G∗) such that
no proper subset of S separates i and j. The param-
eter η in (A4) implicitly places limits on the sparsity
of the graph. For example, we can easily upper bound
η by the maximum degree of the graph. However, for
many graphs, this upper bound is very loose. For ex-
ample, η = 1 for trees, but the maximum degree can
be as large as p − 1. Finally, we define the minimal
conditional correlation coefficient as follows:

ρmin := min
(i,j)∈G∗,|S|≤η

|ρij|S | . (1)

Now, suppose we are given n i.i.d measurements Xn
V =

(X(1)
V , . . . , X(n)

V ) drawn from PX . We work within a
high-dimensional framework so that the various prob-
lem parameters can scale arbitrarily as p → ∞. We
have the following theorem.

Theorem 4.1. Suppose Assumptions (A1)-(A4) hold
and let Ĝ = CIT(Xn

V , η, τp), where τp = 0.9ρmin. For

constants c1, c2 > 0, if ρmin > c1(η+2) log p
(n−η) and

n ≥ η + c2ρ
−2
min(η + 2) log(p) ,

then P(Ĝ = G∗)→ 1 as p→∞.

(a) (b)
V1

V2
V1

V2

n0

n1

(c)
V̂1 V̂2

Figure 3: (a)-(b) Examples of the graphs in Section 5.
(c) Measurement scheme in Algorithms 4 and 5.

The proof of Theorem 4.1, outlined in Appendix B, is
based on methods in [24] and [4]. We note that Theo-
rem 4.1 differs slightly from the results on conditional
covariance based testing in [4]. In particular, the re-
sult in [4] is based on local separators, while the result
in Theorem 4.1 is based on exact separators between
non-edges of the graph. In general, the size of a local
separator is less than the size of the exact separator.
Although we use Theorem 4.1 to analyze our active
learning algorithms, our analysis can be easily derived
using the results from [4].

5 A Graph Family with Two Clusters

In this section, we define a family graphical model fam-
ily to highlight the advantages of active learning. In
the definitions that follow, operations over graphs cor-
respond to operations over the vertices and edges.

Gp,p1,p2,η,d := Family of graphs over p vertices such
that G = G1 ∪G2, where G1 and G2 are characterized
as follows. Arbitrarily select two sets of vertices V1

and V2, such that V1 ∪ V2 = V and T = V1 ∩ V2,
where |T | ≤ 1. Let Gp,η,d be the set of all graphs
over p vertices with maximum degree d and minimal
separator of size less than or equal to η. Assume Gk =
(Vk, E(Gk)) ∈ Gpk,η,d, for k = 1, 2, where pk = |Vk|.
Note that, since |T | ≤ 1, G[V1] = G1 and G[V2] = G2.

Θ(G) := Inverse covariance matrix of a zero mean
Gaussian graphical model on a graph G.

Gp,p1,p2,η,d(θ1, θ2) := Set of all possible inverse covari-
ance matrices Θ(G), where G ∈ Gp,p1,p2,η,d, such that

min
(i,j)∈E(G[Vk])

|Θij(G)|√
Θii(G)Θjj(G)

≥θk, for k = 1, 2, where

θ1 and θ2 quantify the minimal conditional covariances
over V1 and V2 given all other variables.

Throughout this paper, we assume that G∗ ∈
Gp,p1,p2,η,d and that the Gaussian graphical model
has zero mean with inverse covariance Θ(G∗) ∈
Gp,p1,p2,η,d(θ1, θ2). From the definition, it is clear that
G∗ admits a two cluster decomposition, as in Fig-
ure 3(a)-(b), where there exists a set of vertices T that
separates the vertices V1\T and V2\T . In words, this
means that all paths from a vertex in V1\T to a vertex
in V2\T pass through T . When T = ∅, there are no
edges between V1 and V2. Note that the assumption
|T | ≤ 1 is only enforced to simplify our analysis; see
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Remark 6.2 for more details.

Next, we define three parameters on Θ(G∗) that will
be important in the analysis of our algorithm:

ρ0 := min
(i,j)∈E(G∗),|S|≤|T |

|ρij|S | , (2)

ρ1 := min
(i,j)∈E(G∗[V1]),|S|≤η,S⊂V1

|ρij|S | , (3)

ρ2 := min
(i,j)∈E(G∗[V2]),|S|≤η,S⊂V2

|ρij|S | . (4)

Informally, ρ0 quantifies the difficulty in learning the
two cluster decomposition, ρ1 quantifies the difficulty
in learning the edges over V1, and ρ2 quantifies the
difficulty in learning the edges over V2.

Finally, we use the results in [4] to relate the param-
eters ρ1 and ρ2 to θ1 and θ2, respectively. In what
follows, the various parameters defined on the graphi-
cal model are assumed to scale with p and we use the
following notations: ‖M‖ is the spectral norm of a ma-
trix and fp = Ω(gp) means that for sufficiently large
p, there exists a constant c such that fp ≥ cgp.

Theorem 5.1 ([4]). Let Θ(G∗) ∈ Gp,p1,p2,η,d(θ1, θ2).
Suppose Θii(G∗) = 1 ∀ i and Θij(G∗) ≤ 0 for i (= j.
If ‖I − |Θ(G∗)|‖ = α < 1, where α is a constant, then
ρ1 = Ω(θ1) and ρ2 = Ω(θ2).

Theorem 5.1 shows that ρ1 and ρ2 are asymptotically
lower bounded by cθ1 and cθ2, respectively, where c is
an appropriate constant. The condition on Θ(G∗), al-
though restrictive, can be generalized so that Θ(G∗) is
a walk-summable graphical model [25]. For simplicity,
we avoid stating the conditions and refer to Lemma 14
in [4] for more technical details.

6 Theoretical Analysis of a Two-Stage
Active Learning Algorithm

In this section, we derive necessary and sufficient con-
ditions on the number of scalar measurements required
for reliable estimation of the unknown graph using
our active learning algorithm. Recall that if we draw
n measurements from p vertices, then the number of
scalar measurements is np.

Section 6.1 presents sufficient conditions for a modi-
fied version of Algorithm 1 that is designed for graphs
in the two-cluster graph family defined in Section 5.
Section 6.2 presents sufficient conditions when given
prior knowledge about the absence of certain edges in
the graph. Section 6.3 compares the sufficient condi-
tions to necessary conditions required by any passive
graphical model selection algorithm.

6.1 Sufficient Conditions

Recall that Algorithm 1 uses Algorithm 2 to update
the set of active vertices. Unfortunately, an analysis of

Algorithm 2 is not within the scope of this paper and is
left for future work. Instead, we replace Algorithm 2
with another method, specific to the two-cluster de-
composition. The details of the active learning algo-
rithm we analyze is given in Algorithm 4.

Algorithm 4. Two-Stage Active Learning

1) Draw n0 = η+c2 log pmax
{
3ρ−2

0 , ρ−2
2 (η + 2)

}

measurements, Xn0
V , from V .

2) Ĝ←CIT(Xn0
V , η, τ0), where τ0=0.9min{ρ0, ρ2}.

3) Find V̂1, V̂2, and T̂ such that T̂ separates V̂1\T̂
and V̂2\T̂ in Ĝ, |T̂ | = 1, and Ĝ[V2] = G∗[V2].

4) Let p̂1 = |V̂1|. Draw n1 = η + c2ρ
−2
1 (η +

2) log p̂1 − n0 measurements from V̂1.

5) Ĝ1 ← CIT(Xn0+n1

V̂1
, η, τ1), where τ1 = 0.9ρ1.

6) Return Ĝ = Ĝ1 ∪ Ĝ[V̂2].

Algorithm 4 corresponds to Algorithm 1 with two
rounds of measurements (K = 2), A = V , and
Ê = F̂ = ∅. The crux of Algorithm 4 is illustrated in
Figure 3(c), where we first draw measurements from
all the vertices and then focus the next round of mea-
surements over V̂1. We do not draw measurements
over V̂2 since the edges and the non-edges over V̂2 are
estimated using the first round of measurements.

Before presenting our result regarding Algorithm 4, we
state three additional assumptions that we impose on
the graphical model.

(A5) ρ−2
1 (η + 2) log p1 > max{3ρ−2

0 , ρ−2
2 (η + 2)} log p

(A6) 0.9ρ1 > c1(η + 2) log p1/(n0 + n1 − η)
(A7) 0.9min{ρ0, ρ2} > c1(η + 2) log p/(n0 − η)

Informally, (A5) ensures that the subgraph over V1 has
a more complex structure and requires more measure-
ments to reliably estimate all the edges over V1. Both
(A6) and (A7) ensure that the parameters ρ0, ρ1, and
ρ2 are not too small so that the true edges can be
distinguished from the non-edges.

Theorem 6.1. Under Assumptions (A1)-(A7), Algo-
rithm 4 outputs the true graph with probability con-
verging to one as p→ ∞. Furthermore, for constants
c1, c2 > 0, the number of scalar measurements drawn
by Algorithm 4 is equal to

(p− p1)c2 max
{
3ρ−2

0 , ρ−2
2 (η + 2)

}
log p

+pη + p1c2ρ
−2
1 (η + 2) log p1 .

The proof of Theorem 6.1, outlined in Appendix C,
first uses Theorem 4.1 to show that n0 measurements
are sufficient to estimate the two cluster decomposi-
tion and the edges over V2, and then again uses The-
orem 4.1 to show that n0 + n1 measurements are suf-
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ficient to estimate the edges over V1. Note that Al-
gorithm 4 does not necessarily identify the clusters V1

and V2 in step 3. However, as shown in the proof of
Theorem 6.1, given n0 measurements, V̂1 ⊆ V1 and
V2 ⊆ V̂2 with high probability. We now make some
additional remarks.

Remark 6.1. We emphasize that Algorithm 4 does
not assume that V1 and V2 are known. Instead, Al-
gorithm 4 only assumes that the parameters ρ0, ρ1,
and ρ2 are known. Given these parameters, step 3 of
Algorithm 4, where we check if Ĝ[V2] = G∗[V2], can be
implemented using the bounds for the CIT algorithm
in Theorem 4.1. Furthermore, if G∗ does not admit a
two-cluster decomposition, then V̂1 = V and V̂2 = ∅,
in which case Algorithm 4 will mirror the passive CIT
algorithm.

Remark 6.2. Recall from the definition of G∗ in Sec-
tion 5 that we imposed the simplistic assumption that
|T | ≤ 1. At the cost of some additional technicalities,
Theorem 6.1 can be extended to the case when |T | > 1.
The main change in the analysis will be to consider a
slightly larger set V1 to ensure that the edges over T
can be accurately estimated.

Remark 6.3. The choice of n0 and n1, and the sub-
sequent analysis, is assuming the two cluster decom-
position. In practice, the graph G∗ can admit mul-
tiple two cluster decompositions. Subsequently, Algo-
rithm 4 can be tailored for such decompositions. Thus,
we can derive multiple bounds for the scalar measure-
ments required for Algorithm 4 and the optimal one
will correspond to the minimum over all two cluster
decompositions of the graph G∗.

Remark 6.4. It is easy to see that if (A5) holds,
then the difference between the the scalar measure-
ments required for Algorithm 4 and the scalar mea-
surements required for the passive CIT algorithm is
O((p−p1)ρ−2

1 log p1). This suggests that when p1 7 p,
the advantages of using Algorithm 2 may be much
more pronounced. Unfortunately, it is not clear if this
analysis is tight since we are comparing the differences
between two sufficient conditions. Regardless, our nu-
merical simulations in Section 6 clearly show the ben-
efits of active learning.

6.2 Using Prior Knowledge

In this section, we analyze a variant of Algorithm 4
when given a priori knowledge that there exists no
edges between V1\T and V2\T in G∗. This informa-
tion could be extracted from prior knowledge about
the graphical model of interest. For example, when
studying financial data from companies, there may be
prior knowledge available about the sectors of differ-
ent companies. When studying gene expression data,
there may be prior knowledge available about the dif-
ferent pathways genes belong to. We show that using

such prior knowledge to adapt measurements can lead
to significant reductions in the sample complexity of
learning the true graph.

In Algorithm 5, we modify Algorithm 4 to take into
account the prior knowledge about the graph.

Algorithm 5. Given that T separates V1\T and
V2\T , implement Algorithm 4 with Steps 1 and 2
replaced by

1) Draw n0 measurements, Xn0
V , from V such

that n0 = η + c2ρ
−2
2 (η + 2) log(p2).

2) Ĝ← CIT(Xn0
V , η, τ0), where τ0 = 0.9ρ2.

Algorithm 5 simply changes the initial measurements
in Algorithm 4 to account for the fact that some non-
edges in G∗ are already known. In Algorithm 1, this
corresponds to appropriately specifying the set F̂ . Be-
fore stating the main result regarding Algorithm 5,
which follows easily from Theorem 6.1, we consider
the following assumptions that are analogous to (A5)-
(A7).

(A5′) ρ−2
1 log p1 > ρ−2

2 log p

(A6′) 0.9ρ2 > c1(η + 2) log p2/(n0 − η)
(A7′) 0.9ρ1 > c1(η + 2) log p1/(n0 + n1 − η)

Note that n0 and n1 in (A6′)-(A7′) are defined in Al-
gorithm 5.

Theorem 6.2. Under Assumptions (A1)-(A4),
(A5 ′)-(A7 ′) and given that T separates V1\T and
V2\T , Algorithm 5 outputs the true graph with proba-
bility converging to one as p → ∞. Furthermore, for
constants c1, c2 > 0, the number of scalar measure-
ments is equal to

(p−p1)c2ρ−2
2 (η + 2) log p2+pη + p1c2ρ

−2
1 (η+2) log p1.

The only difference between Theorem 6.1 and Theo-
rem 6.2 is that the scalar measurements in the later
theorem no longer depends on ρ0, the parameter that
quantifies the difficulty in learning the two cluster de-
composition. An alternative active learning method is
to draw measurements from V1 and V2 separately. As
long as |T | is small, this strategy will roughly need the
same number of scalar measurements as Algorithm 3.
However, if there are constraints on the number of joint
measurements a system can make, then this later strat-
egy could be more useful. For example, if the measure-
ments are acquired from a sensor network, then there
may be limits on the number of joint measurements
sensors can transmit so as to conserve the battery life
of sensors.

6.3 Comparison to Necessary Conditions

We now compare the sufficient conditions in Theo-
rem 6.2 to the necessary conditions for any passive
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algorithm. Let Xn
V be n i.i.d. samples drawn from

N (0,Θ−1(G∗)), where Θ(G∗) ∈ Gp,p1,p2,η,d(θ1, θ2).
Let ψ be a graph decoder that takes as input Xn

V and
outputs a graph in Gp,p1,p2,η,d(θ1, θ2). For any decoder
ψ, define the maximal probability of error as

pe(ψ) = max
Θ(G)∈Gp1,p2,η,d(θ1,θ2)

P(ψ(Xn
V ) (= G) ,

where the probability is with respect to the product
distribution of (N (0,Θ−1(G)))n over n i.i.d. obser-
vations. We say a graph decoder is high-dimensional
consistent if pe(ψ)→ 0 as p→∞.

Theorem 6.3. Suppose θ1, θ2 ∈ [0, 0.5] and the de-
coder ψ is given prior knowledge that there are no
edges between V1\T and V2\T . A necessary condition
for high-dimensional consistent graphical model selec-
tion over a Gaussian graphical model with the inverse
covariance matrix in the set Gp,p1,p2,η,d(θ1, θ2) is

n >
1

2
max

{
θ−2
1 log

p1 − d− 1

2e
, θ−2

2 log
p2 − d− 1

2e

}
.

The proof of Theorem 6.3, given in the supplement,
uses information-theoretic methods from [26].

We now compare the passive and active algorithms.
Suppose θ1 is small enough so that θ−2

1 log(p1 − d −
1) > θ−2

2 log(p2−d−1), and θ−2
1 log(p1) > θ−2

2 log(p2).
Then, the necessary conditions on the number of scalar
measurements for consistent selection by any passive
algorithm scales as

qpassive = Ω(pθ−2
1 log(p1 − d− 1)). (5)

On the other hand, using Theorem 5.1 in Theorem 6.2,
and assuming that η is a constant, the sufficient con-
ditions for the active method in Algorithm 5 scales as

qactive = Ω((p− p1)θ
−2
2 log p2 + p1θ

−2
1 log p1) . (6)

Now, consider the condition

θ21 < θ22
p1 log p1

(p− p1) log p2
. (7)

A simple calculation shows that if (7) holds, then
qactive = Ω(p1θ

−2
1 log p1). Thus, if d 7 p1 7 p, and

(7) holds, then Algorithm 5 requires far fewer number
of scalar measurements than any other passive algo-
rithm. To get an understanding of the condition in (7),
suppose p1 =

√
p and |T | = 0. Then, θ21 = O(θ22/

√
p).

In other words, the advantages of active learning are
substantial when θ1 is much smaller than θ2.

Finally, we note that our analysis is only for Algo-
rithm 5, where information about the graph decom-
position is known to the algorithm. An open problem
is to study how the performance of Algorithm 4 com-
pares to the necessary conditions when no information
about the graph decomposition is given.

7 Numerical Results

In this section, we present numerical results that high-
light the advantages of our active learning algorithm.
For all synthetic results, we assume that PX is mul-
tivariate Gaussian with mean zero and covariance Σ.
Define the inverse covariance matrix by Θ = Σ−1. If
PX is Markov on G∗, it is well known that (i, j) /∈ G∗

implies that Θij = 0.

We consider three different kinds of synthetic graphical
models and assume that Θii = 1 for i = 1, 2, . . . , p. For
all graphs considered below, we assume that the first
p1 vertices are weak edges so that the absolute value of
the non-zero entries over these vertices is smaller than
the other non-zero entries. We refer to Appendix E for
results on scale-free graphs.

Chain Graph: Θi,i+1 = ρ1 for i = 1, . . . , p1 (weak
edges) and Θi,i+1 = ρ2 for i = p1 + 1, . . . , p (strong
edges). Let ρ1 = 0.1, ρ2 = 0.3, and Θij = Θji.

Hub Graph: The first p1 vertices are partitioned into
vertices of size 10 and the remaining vertices are par-
titioned into vertices of size 5. For each partition,
all vertices are connected to one vertex. Θij is con-
structed so that Θij = 1/dij − ε, where dij is either
the degree of vertex i or the degree of vertex j, de-
pending on which one is larger. The scalar ε = 10−4.
The above construction ensures that the matrix Θ is
positive and symmetric.

Cluster Graph: All vertices are partitioned into clus-
ters of size 20. For the first p1/20 clusters, the edges
over each cluster are generated using an Erdos-Renyi
(ER) random graph model so that the probability that
each edge appears in a cluster is 0.2. For the remaining
clusters, the graph over each cluster is an ER graph
with edges appearing with probability 0.1. The inverse
covariance matrix is constructed as in the Hub graph
case. This construction ensures that the edges cor-
responding to the first p1 = 0.2p vertices have lower
partial correlation values than all other edges.

7.1 Methodology

We use the CIT with κ = 1 to perform the active learn-
ing component (computing H+ and H−) of our algo-
rithm and CIT with κ = 2 to estimate the final graph.
In all experiments, K = 5 and δ = 0.5.

We specify q = n × p, the desired number of scalar
measurements, to our algorithm and obtain a matrix
X̄ of size n̄ × p, where n̄ ≥ n. Each column in this
matrix corresponds to the samples obtained from a
random variable. Since we perform active learning,
some entries in X̄ will be missing. Moreover, in gen-
eral, we may not be able to get exactly q scalar mea-
surements, so we stop obtaining measurements until
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Table 1: Cluster graph with p = 400 vertices
Oracle Results Model Selection Results

n Alg TPR FDR ED TPR FDR ED
200 Nonactive 0.409 (0.003) 0.149 (0.003) 283 (0.969) 0.29 (0.000) 0.029 (0.000) 307 (0.145)

Active 0.405 (0.002) 0.120 (0.003) 278 (0.697) 0.296 (0.000) 0.022 (0.000) 303 (0.157)
400 Nonactive 0.675 (0.002) 0.0726 (0.003) 162 (0.838) 0.568 (0.001) 0.0148 (0.000) 188 (0.199)

Active 0.695 (0.003) 0.0666 (0.002) 152 (0.765) 0.575 (0.001) 0.0111 (0.000) 184 (0.202)
600 Nonactive 0.787 (0.002) 0.0381 (0.001) 104 (0.689) 0.739 (0.000) 0.015 (0.000) 116 (0.144)

Active 0.819 (0.002) 0.0488 (0.001) 95.5 (0.702) 0.747 (0.000) 0.001 (0.000) 111 (0.161)

the maximum possible number of measurements have
been made. Note that, when learning the final graph,
we only need to consider the random variables over
which we have n̄ observations. This is because the
edges, and the non-edges, for all other random vari-
ables are estimated in the active learning component.

We compare the active learning graphs to two other
estimated graphs. The first is the graph estimated us-
ing n × p nonactive or passive measurements. The
second is the graph estimated using an n̄× p measure-
ment matrix X̃ that contains randomly chosen missing
entries that sum to the number of missing entries in
X̄. CIT can be easily applied to X̃. We emphasize
that all three graphs, active, nonactive, and random,
are estimated using roughly the same number of scalar
measurements.

We use the extended Bayesian information criterion
(EBIC) for model selection [27]. EBIC requires an
appropriate input parameter γ that controls the spar-
sity of the graph. We use γ = 0.5 as suggested by
the authors in [27]. When using X̄ and X̃, we make
appropriate modifications to compute the likelihood
function, see [28] for more details.

We use three measures to compare an estimated graph
to the true graph. The first is the true positive rate
(TPR), which is the number of true edges estimated di-
vided by the total number of true edges. The second is
the false discovery rate (FDR), which is the number of
falsely detected edges divided by the number of edges
estimated. The third is the edit distance (ED), which
is the number of true edges missed plus the number of
falsely detected edges.

7.2 Results

Figure 4(a)-(b) show results for the chain and hub
graphs with p = 100 and p = 200 vertices. The graphs
estimated in each case are oracle estimates, i.e., the
true graph was used to select an optimal threshold for
CIT. This allows us to quantify the benefits of active
learning and also validate our theoretical results. The
plots show the variation of the edit distance for active,
nonactive, and random graph estimates as the number
of scalar measurements increase. For small q, no active
learning is done since there are not enough measure-
ments to separate the weak parts of the graph from
the strong parts. As q increases, we clearly see the

benefits of using active learning.
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Figure 4: Mean edit distance vs. number of scalar
measurements over 50 trials for chain and hub graphs.

Table 1 shows results for the cluster graph when p =
400 and n = 200, 400, 600. Each entry in the table
is the mean value of the metric over 50 trials with
the standard error given in brackets. We present both
oracle and model selection results. In both cases, the
benefits of active learning is clear.

8 Conclusions

We have proposed an active learning algorithm for
graphical model selection by adapting measurements
drawn from a graphical model to certain subsets of
vertices in a graph. We have identified a broad class
of graphical models for which active learning can lead
to significant savings in the total number of measure-
ments needed for consistent graph recovery.

We highlight two interesting directions of future re-
search. First, our algorithm depends on successfully
selecting a superset of the true graph. Although we
used a heuristic in our implementation, it will be ex-
tremely useful to have a consistent estimator that can
reliably prune out several edges. Second, it will be
interesting to study active learning algorithms for pa-
rameter estimation in graphical models.
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